Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(15): 43768-43777, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36662438

RESUMO

Sulfur dioxide (SO2) is a toxic pollutant and its fixation is a high cost but imperative task for sulfide metallurgy industry. Although being a mature technology for on-line fixation of SO2 by limestone injection in coal-fired boilers, its application is rarely investigated in the sulfide metallurgy plant. Extending this technology to the metallurgy industry is highly plausible, but with the feasibility and practicability waiting to be uncovered. Herein, feeding CaO into the rotary volatilization kiln as SO2-fixation agent is demonstrated to be an efficient in-furnace desulfurization strategy for zinc smelting plant. The sulfur distribution within the entire smelting process is systematically analyzed, determining that the critical procedure for pressuring the desulfurization system is the rotary volatilization kiln. The thermodynamics analysis shows that addition of CaO is feasible for SO2 fixation by forming CaS or restraining the reductive decomposition of SO42-. The industrial tests, including the online monitoring of kiln flue gas and kiln slag analysis, validate the thermodynamics analysis, realizing a 24.6% reduction of SO2 in the flue gas by converting gaseous SO2 to solid CaS via feeding 20% CaO. The present study highlights an effective strategy for on-line fixing the SO2, being a potential way for relieving the desulfurization pressures in zinc sulfide metallurgy plant.


Assuntos
Poluentes Atmosféricos , Dióxido de Enxofre , Óxidos , Poluentes Atmosféricos/análise , Zinco , Volatilização , Sulfetos
2.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677660

RESUMO

The direct and rapid determination of trace cobalt ion (Co2+) in the electrolyte of zinc smelting plants is urgently needed but is impeded by the severe interference of extremely high-concentration zinc ions in the solution. Herein, colorimetric detection of Co2+ by the polyvinylpyrrolidone functionalized silver nanoparticles (PVP-AgNPs) is realized in solutions with the Zn/Co ratio being high, up to (0.8-5) × 104, which is located within the ratio range in industrial solution. The high concentration of Zn2+ induces a strong attenuation of Co2+-related signals in ultraviolet-visible (UV-vis) extinction spectra; nevertheless, a good linear range for detecting 1-6 mg/L Co2+ in 50 g/L Zn2+ solution is still acquired. The strong anti-interference toward other metal ions and the mechanism understanding for trace Co2+ detection in such a high-concentration Zn2+ solution are also revealed by systematic analysis techniques. The results extend the AgNPs as colorimetric sensors to industrial solutions, providing a new strategy for detecting trace-metal ions in industrial plants.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957112

RESUMO

The controllable preparation of silver nanowires (AgNWs) with a high aspect ratio is key for enabling their applications on a large scale. Herein, the aspect ratio regulation of AgNWs mediated by halogen ion composition in ethylene glycol system was systematically investigated and the size evolution mechanism is elaborately understood. The co-addition of Br- and Cl- results in AgNWs with the highest aspect ratio of 1031. The surface physicochemical analysis of AgNWs and the density functional theory calculations indicate that the co-addition of Br- and Cl- contributes to the much-enhanced preferential growth of the Ag(111) crystal plane. At the same time, when Cl- and Br- coexist in the solution, the growth of the Ag(100) crystal plane on the AgNWs was restrained compared with that in the single Cl- system. Resultantly, the enhanced growth of Ag(111) and the inhibited growth of Ag(100) contribute to the formation of AgNWs with a higher aspect ratio in the Cl-Br mixed solution. The results can provide new insights for understanding the morphology and size evolution during the AgNWs preparation in ethylene glycol system.

4.
RSC Adv ; 10(6): 3520-3528, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35497745

RESUMO

Based on the homology principle in advanced pharmaceutical chemistry, a new high efficiency and low toxicity collector, O-butyl S-(1-chloroethyl)carbonodithioate, was designed. By using molecular simulation technology, MS (Materials Studio) was used to build the molecular model of the collector. The molecular structure was relaxed and optimized. The process of interaction between reagent and mineral surface was simulated and the interaction energy of reagent and mineral surface was calculated by density functional theory (DFT). The interaction process of the new collector and butyl xanthate on the mineral surface and the interaction energy of these two reagents and mineral surface were compared. The molecular structure of the new collector was designed from the perspective of the difference of the interaction energy between the reagents and the mineral surface. According to the results of molecular design and modelling, the new collector was synthesized. The flotation tests of pure minerals and real ores were carried out to verify the new collector. The experimental results showed that the collector has the characteristics of low toxicity, high selectivity, moderate collecting ability and low cost, and it is more suitable for flotation of the complex and refractory copper sulfide with low grade and fine dissemination.

5.
J Biomed Mater Res B Appl Biomater ; 79(1): 116-21, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16615069

RESUMO

Fine ceramic lattices with spatial resolution <100 microm and having precise dimensions and intricate hierarchical structure are fabricated by extrusion freeforming, a rapid prototyping technique, which allows overall shape and structure to be controlled by computer. The procedure can be used for any fine ceramic powder and can therefore find applications as diverse as microwave and terahertz metamaterials (artificial crystals), hard tissue scaffolds, microfluidic devices, and metal matrix composite preforms. The examples presented here are calcium phosphate lattices with three structure levels: submicron pores, which enhance cell-surface interactions, pores of tens of microns to encourage bone ingrowth, and corridors (hundreds of microns) for vascularization. With controlled pore structures on these scales, the lattices are expected to provide customized biological, mechanical, and geometrical requirements.


Assuntos
Materiais Biocompatíveis , Cerâmica , Fosfatos de Cálcio , Durapatita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...